Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.274
Filtrar
1.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
2.
J Cancer Res Clin Oncol ; 150(3): 165, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546751

RESUMO

PURPOSE: Cancer testis antigens (CTAs) are a family of proteins typically expressed in male testicles but overexpressed in various cancer cell types. Transmembrane Phosphatase with Tensin homology (TPTE) is expressed only in the testis of healthy individuals and is a member of the family of CTAs. The current study, for the first time, examined the significance of TPTE expression in prostate cancer (PCa) tissues by generating a novel antibody marker targeting TPTE protein. METHODS: Polyclonal antibodies were prepared for TPTE-p1 and TPTE-p2 peptides, which are derived from the extracellular domains of TPTE. Anti-TPTE-p2 antibody was then used to study the extent and pattern of TPTE expression in 102 PCa and 48 benign prostatic hyperplasia (BPH) tissue samples by immunohistochemistry. The viability of cancer cell lines (PC-3 and MCF-7 cells) was also evaluated in the presence of anti-TPTE-p2 antibody using the MTT test. RESULTS: The immunohistochemical analysis demonstrated a significant increase in cytoplasmic and membrane TPTE expression in the PCa samples compared to the BPH group (both P < 0.0001). Cytoplasmic TPTE expression was positively correlated with Gleason score and PSA levels (P = 0.03 and P = 0.001, respectively). Significant correlations were identified between the levels of PSA and perineural invasion and the membrane expression (P = 0.01, P = 0.04, respectively). Moreover, anti-TPTE-p2 antibody inhibited PC-3 and MCF-7 cells proliferation compared to the control group for 24 h (P < 0.001 and P = 0.001, respectively) as well as for 48 h (P = 0.001 and P = 0.001, respectively). CONCLUSION: Our findings indicate that increased TPTE expression is associated with progression of disease. The ability of anti-TPTE-p2 antibody to recognize and target the TPTE protein makes it a potential biomarker to assess and/or target the PCa.


Assuntos
Proteínas de Membrana , PTEN Fosfo-Hidrolase , Hiperplasia Prostática , Neoplasias da Próstata , Humanos , Masculino , Anticorpos , Biomarcadores , Células MCF-7 , Antígeno Prostático Específico , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , PTEN Fosfo-Hidrolase/genética , Proteínas de Membrana/genética , Células PC-3
3.
Biochem Pharmacol ; 222: 116097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428827

RESUMO

OBJECTIVES: Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS: We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS: Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION: This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.


Assuntos
Naftalenos , PPAR gama , Neoplasias da Próstata , Masculino , Humanos , PPAR gama/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Apoptose , Proliferação de Células , Lipídeos , Linhagem Celular Tumoral
4.
Chem Biol Drug Des ; 103(3): e14503, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38480495

RESUMO

Flubendazole, an FDA-approved anthelmintic, has been predicted to show strong VEGFR2 inhibitory activity in silico screening combined with in vitro experimental validation, and it has shown anti-cancer effects on some human cancer cell lines, but little is known about the anti-angiogenesis effects and anti-prostate cancer effects. In this study, we analyzed the binding modes and kinetic analysis of flubendazole with VEGFR2 and first demonstrated that flubendazole suppressed VEGF-stimulated cell proliferation, wound-healing migration, cell invasion and tube formation of HUVEC cells, and decreased the phosphorylation of extracellular signal-regulated kinase and serine/threonine kinase Akt, which are the downstream proteins of VEGFR2 that are important for cell growth. What's more, our results showed that flubendazole decreased PC-3 cell viability and proliferation ability, and suppressed PC-3 cell wound healing migration and invasion across a Matrigel-coated Transwell membrane in a concentration-dependent manner. The antiproliferative effects of flubendazole were due to induction of G2-M phase cell cycle arrest in PC-3 cells with decreasing expression of the Cyclin D1 and induction of cell apoptosis with the number of apoptotic cells increased after flubendazole treatment. These results indicated that flubendazole could exert anti-angiogenic and anticancer effects by inhibiting cell cycle and inducing cell apoptosis.


Assuntos
60489 , Mebendazol/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Humanos , Células PC-3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cinética , Movimento Celular , Proliferação de Células , Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396744

RESUMO

Cysteine-rich angiogenic factor 61 (CCN1/Cyr61) is a matricellular protein that is induced and secreted in response to growth factors. Our previous work showed that 18:1-lysophosphatidic acid (LPA), which activates the G protein-coupled receptor LPAR1, induces CCN1 between 2-4 h in PC-3 human prostate cancer cells in a manner than enhances cell-substrate adhesion. While the time course of induction suggests that CCN1 contributes to intermediate events in LPA action, the roles of CCN1 in LPA-mediated signal transduction have not been fully elucidated. This study utilized a comprehensive global proteomics approach to identify proteins up- or down-regulated in response to treatment of PC-3 cells with LPA for three hours, during the time of peak CCN1 levels. In addition, the effects of siRNA-mediated CCN1 knockdown on LPA responses were analyzed. The results show that, in addition to CCN1, LPA increased the levels of multiple proteins. Proteins up-regulated by LPA included metastasis-associated in colon cancer protein 1 (MACC1) and thrombospondin-1 (TSP1/THBS1); both MACC1 and TSP1 regulated cancer cell adhesion and motility. LPA down-regulated thioredoxin interacting protein (TXNIP). CCN1 knockdown suppressed the LPA-induced up-regulation of 30 proteins; these included MACC1 and TSP1, as confirmed by immunoblotting. Gene ontology and STRING analyses revealed multiple pathways impacted by LPA and CCN1. These results indicate that CCN1 contributes to LPA signaling cascades that occur during the intermediate phase after the initial stimulus. The study provides a rationale for the development of interventions to disrupt the LPA-CCN1 axis.


Assuntos
Proteína Rica em Cisteína 61 , Neoplasias da Próstata , Proteômica , Humanos , Masculino , Lisofosfolipídeos/metabolismo , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255837

RESUMO

Drug repurposing is a strategy for discovering new applications of existing drugs for use in various diseases. Despite the use of structured networks in drug research, it is still unclear how drugs interact with one another or with genes. Prostate adenocarcinoma is the second leading cause of cancer mortality in the United States, with an estimated incidence of 288,300 new cases and 34,700 deaths in 2023. In our study, we used integrative information from genes, pathways, and drugs for machine learning methods such as clustering, feature selection, and enrichment pathway analysis. We investigated how drugs affect drugs and how drugs affect genes in human pancreatic cancer cell lines that were derived from bone metastases of grade IV prostate cancer. Finally, we identified significant drug interactions within or between clusters, such as estradiol-rosiglitazone, estradiol-diclofenac, troglitazone-rosiglitazone, celecoxib-rofecoxib, celecoxib-diclofenac, and sodium phenylbutyrate-valproic acid.


Assuntos
Diclofenaco , Neoplasias da Próstata , Humanos , Masculino , Celecoxib , Estradiol , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Rosiglitazona , Células PC-3
7.
Int J Environ Health Res ; 34(2): 1034-1043, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36970877

RESUMO

Teucrium persicum Boiss. an Iranian endemic plant is used in Iranian traditional medicine. E-cadherin transmembrane protein participates in adherens junctions and is the main partner for ß-catenin protein. The GC-MS analysis was used to detect the chemical constituents of the methanolic extract. Its effects on the transcription of the E-cadherin encoding gene, cellular levels, and localization of E-cadherin protein in PC-3 cells were investigated. About 70 chemical constituents were identified. Indirect immunofluorescence microscopy and western blotting results revealed the restoration of E-cadherin protein at cell adhesion contact sites in cells treated with T. persicum extract. Gene expression studies revealed that the extract increased the transcription of the E-cadherin encoding gene in PC-3 cells. These results suggest that T. persicum extract may contain potent compounds that provide further support for the anticancer properties of T. persicum. Surely, detailed molecular investigations are needed to find the mechanism(s) behind these effects.


Assuntos
Teucrium , Humanos , Teucrium/química , Teucrium/metabolismo , Células PC-3 , Irã (Geográfico) , Caderinas/genética , Caderinas/metabolismo , Extratos Vegetais/farmacologia
8.
Nutrients ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960146

RESUMO

Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in males worldwide. Early-stage PC patients can benefit from surgical, radiation, and hormonal therapies; however, once the tumor transitions to an androgen-refractory state, the efficacy of treatments diminishes considerably. Recently, the exploration of natural products, particularly dietary phytochemicals, has intensified in response to addressing this prevailing medical challenge. In this study, we uncovered a synergistic effect from combinatorial treatment with lovastatin (an active component in red yeast rice) and Antrodia camphorata (AC, a folk mushroom) extract against PC3 human androgen-refractory PC cells. This combinatorial modality resulted in cell cycle arrest at the G0/G1 phase and induced apoptosis, accompanied by a marked reduction in molecules responsible for cellular proliferation (p-Rb/Rb, Cyclin A, Cyclin D1, and CDK1), aggressiveness (AXL, p-AKT, and survivin), and stemness (SIRT1, Notch1, and c-Myc). In contrast, treatment with either AC or lovastatin alone only exerted limited impacts on the cell cycle, apoptosis, and the aforementioned signaling molecules. Notably, significant reductions in canonical PC stemness markers (CD44 and CD133) were observed in lovastatin/AC-treated PC3 cells. Furthermore, lovastatin and AC have been individually examined for their anti-PC properties. Our findings elucidate a pioneering discovery in the synergistic combinatorial efficacy of AC and clinically viable concentrations of lovastatin on PC3 PC cells, offering novel insights into improving the therapeutic effects of dietary natural products for future strategic design of therapeutics against androgen-refractory prostate cancer.


Assuntos
Produtos Biológicos , Neoplasias da Próstata , Masculino , Humanos , Androgênios/metabolismo , Células PC-3 , Lovastatina/farmacologia , Proliferação de Células , Apoptose , Neoplasias da Próstata/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894751

RESUMO

Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.


Assuntos
Carcinoma , Neoplasias da Próstata , Humanos , Masculino , Carcinoma/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células PC-3 , Fosfoproteínas/metabolismo , Fosforilação , Próstata/patologia , Neoplasias da Próstata/metabolismo
10.
Genes (Basel) ; 14(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37761870

RESUMO

Prostate cancer (PC) and colon cancer significantly contribute to global cancer-related morbidity and mortality. Thymoquinone (TQ), a naturally occurring phytochemical found in black cumin, has shown potential as an anticancer compound. This study aimed to investigate the effects of TQ on the expression profile of key tumor suppressor and onco-suppressor miRNAs in PC3 prostate cancer cells and HCT-15 colon cancer cells. Cell viability assays revealed that TQ inhibited the growth of both cell lines in a dose-dependent manner, with IC50 values of approximately 82.59 µM for HCT-15 and 55.83 µM for PC3 cells. Following TQ treatment at the IC50 concentrations, miRNA expression analysis demonstrated that TQ significantly downregulated miR-21-5p expression in HCT-15 cells and upregulated miR-34a-5p, miR-221-5p, miR-17-5p, and miR-21-5p expression in PC3 cells. However, no significant changes were observed in the expression levels of miR-34a-5p and miR-200a-5p in HCT-15 cells. The current findings suggest that TQ might exert its antiproliferative effects by modulating specific tumor suppressor and onco-suppressor miRNAs in prostate and colon cancer cells. Further investigations are warranted to elucidate the precise underlying mechanisms and to explore the therapeutic potential of TQ in cancer treatment. To the best of our knowledge, this is the first report regarding the effect of TQ on the miRNA expression profile in colon and prostate cancer cell lines.


Assuntos
Neoplasias do Colo , MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Próstata/patologia , Células PC-3 , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética
11.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762214

RESUMO

Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells. Consistently, Brassinin reduced the number of colonies and increased the sub-G1 population and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells in the PC-3 cells. Of note, Brassinin suppressed the expressions of pyruvate kinase-M2 (PKM2), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) as glycolytic proteins in the PC-3 cells. Furthermore, Brassinin significantly reduced the expressions of SIRT1, c-Myc, and ß-catenin in the PC-3 cells and also disrupted the binding of SIRT1 with ß-catenin, along with a protein-protein interaction (PPI) score of 0.879 and spearman's correlation coefficient of 0.47 being observed between SIRT1 and ß-catenin. Of note, Brassinin significantly increased the reactive oxygen species (ROS) generation in the PC-3 cells. Conversely, ROS scavenger NAC reversed the ability of Brassinin to attenuate pro-PARP, pro-Caspase3, SIRT1, and ß-catenin in the PC-3 cells. Taken together, these findings support evidence that Brassinin induces apoptosis via the ROS-mediated inhibition of SIRT1, c-Myc, ß-catenin, and glycolysis proteins as a potent anticancer candidate.


Assuntos
Sirtuína 1 , beta Catenina , Humanos , Apoptose , beta Catenina/metabolismo , Linhagem Celular Tumoral , Células PC-3 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo
12.
Exp Biol Med (Maywood) ; 248(20): 1695-1707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646261

RESUMO

Resistin and suppressors of cytokine signaling (SOCSs) have been reported to regulate prostate cancer (PCa) cell proliferation and survival, respectively. Whether any of the SOCS molecules mediate the mitogenic effect of resistin on PCa cells is unknown. Using PC-3 human PCa cells, we found that resistin upregulates the expression of SOCS3 and SOCS5 mRNA, but not SOCS7 mRNA, in a dose- and time-dependent manner. The resistin-induced increases in SOCS3 and SOCS5 expression and cell proliferation were prevented by pretreatment with specific inhibitors of the TLR4, ERK, p38 MAPK, JNK, PI3K, and JAK2 proteins. However, pretreatment with a TLR2 inhibitor had no effect on resistin-mediated SOCS3 and SOCS5 expression. In addition, the effects of resistin on SOCS3, SOCS5, and SOCS7 mRNA levels were cell type-specific. Overexpression of either SOCS3 or SOCS5 enhanced further resistin-stimulated growth of PC-3 cells, whereas silencing SOCS3 or SOCS5 antagonized resistin-increased cell growth. Further PCa tissue analysis demonstrated higher levels of RETN, TLR4, SOCS3, and SOCS5 mRNAs in cancer tissues than benign prostate hyperplasia and indicated positive correlations among RETN, TLR4, and SOCS5. These data suggest that SOCS5, TLR4, and, to a lesser extent, SOCS3 can mediate the mitogenic effect of resistin on PC-3 PCa cells.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Células PC-3 , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Resistina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Int J Cancer ; 153(10): 1829-1841, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526104

RESUMO

Prostate cancer (PCa) is the second most frequent and sixth most fatal cancer in men worldwide. Despite its high prevalence, our understanding of its etiology and the molecular mechanisms involved in the progression of the disease is substantially limited. In recent years, the potential participation of exosomes in this process has been suggested. Therefore, we aim to study the effect of exosomes isolated from the serum of patients with PCa on various cellular processes associated with increased tumor aggressiveness in two PCa cell lines: LNCaP-FGC and PC3. The exosomes were isolated by filtration wand ultracentrifugation. Their presence was confirmed by immunodetection of specific markers and their size distribution was analyzed by Dynamic Light Scattering (DLS). The results obtained demonstrated that serum exosomes from PCa patients increased migration of PC3 cells and neuroendocrine differentiation of LNCaP-FGC cells regardless of the grade of the tumor. PCa serum exosomes also enhanced the secretion of enzymes related to invasiveness and resistance to chemotherapeutics, such as extracellular matrix metalloproteases 2 and 9, and gamma-glutamyltransferase in both cell lines. Altogether, these findings support the pivotal participation of exosomes released by tumoral cells in the progression of PCa. Future studies on the molecular mechanisms involved in the observed changes could provide crucial information on this disease and help in the discovery of new therapeutic targets.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Fenótipo
14.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569345

RESUMO

In previous work, we showed that cancer cells do not depend on glycolysis for ATP production, but they do on fatty acid oxidation. However, we found some cancer cells induced cell death after glucose deprivation along with a decrease of ATP production. We investigated the different response of glucose deprivation with two types of cancer cells including glucose insensitive cancer cells (GIC) which do not change ATP levels, and glucose sensitive cancer cells (GSC) which decrease ATP production in 24 h. Glucose deprivation-induced cell death in GSC by more than twofold after 12 h and by up to tenfold after 24 h accompanied by decreased ATP production to compare to the control (cultured in glucose). Glucose deprivation decreased the levels of metabolic intermediates of the pentose phosphate pathway (PPP) and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) in both GSC and GIC. However, glucose deprivation increased reactive oxygen species (ROS) only in GSC, suggesting that GIC have a higher tolerance for decreased NADPH than GSC. The twofold higher ratio of reduced/oxidized glutathione (GSH/GSSG) in GIS than in GSC correlates closely with the twofold lower ROS levels under glucose starvation conditions. Treatment with N-acetylcysteine (NAC) as a precursor to the biologic antioxidant glutathione restored ATP production by 70% and reversed cell death caused by glucose deprivation in GSC. The present findings suggest that glucose deprivation-induced cancer cell death is not caused by decreased ATP levels, but rather triggered by a failure of ROS regulation by the antioxidant system. Conclusion is clear that glucose deprivation-induced cell death is independent from ATP depletion-induced cell death.


Assuntos
Trifosfato de Adenosina , Glucose , Neoplasias , Espécies Reativas de Oxigênio , Glucose/deficiência , Trifosfato de Adenosina/metabolismo , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Glutationa/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Células PC-3 , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Morte Celular
15.
Med Oncol ; 40(8): 244, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453954

RESUMO

Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.


Assuntos
Neoplasias da Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacologia , Metaloproteinase 9 da Matriz/genética , Células PC-3 , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Linhagem Celular Tumoral , Apoptose , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Metaloproteinases da Matriz , RNA Mensageiro/genética
16.
J Inorg Biochem ; 247: 112326, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478778

RESUMO

Novel water-soluble half-sandwich ruthenium(II) polypyridyl-glycoconjugates [Ru(p-cymene)Cl{N-(1,10-phenanthroline-5-yl)-ß-glycopyranosylamine}][Cl] (glycopyranosyl = d-glucopyranosyl (1), D-mannopyranosyl (2), L-rhamnopyranosyl (3) and l-xylopyranosyl (4)) have been synthesized and fully characterized. Their behaviour in water under physiological conditions has been studied by nuclear magnetic resonance spectroscopy, revealing their hydrolytic stability. Interactions of the novel compounds with duplex-deoxiribonucleic acid (dsDNA) were investigated by different techniques and the results indicate that, under physiological pH and saline conditions, the metal glycoconjugates bind DNA in the minor groove and/or through external, electrostatic interactions, and by a non-classical, partial intercalation mechanism in non-saline phosphate buffered solution. Effects of compounds 1-4 on cell viability have been assessed in vitro against two human cell lines (androgen-independent prostate cancer PC-3 and non-tumorigenic prostate RWPE-1), showing moderate cytotoxicities, with IC50 values higher than those found for free ligands [N-(1,10-phenanthroline-5-yl)-ß-glycopyranosylamine] (glycopyranosyl = d-glucopyranosyl (a), D-mannopyranosyl (b), L-rhamnopyranosyl (c) and l-xylopyranosyl (d)) or corresponding metal-aglycone. Cell viability was assayed in the presence and absence of the glucose transporters (GLUTs) inhibitor [N4-{1-(4-cyanobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl}-7-fluoroquinoline-2,4-dicarboxamide] (BAY-876), and the results point to a negligible impact of the inhibition of GLUTs on the cytotoxicity caused by Ru(II) compounds 1-4. Remarkably, glycoconjugates 1-4 potently affect the migration pattern of PC-3 cells, and the wound healing assay evidence that the presence of the carbohydrate and the Ru(II) center is a requisite for the anti-migratory activity observed in these novel derivatives. In addition, derivatives 1-4 strongly affect the matrix metalloproteinase MMP-9 activities of PC-3 cells, while proMMP-2 and especially proMMP-9 were influenced to a much lesser extent.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Masculino , Humanos , Fenantrolinas , Células PC-3 , Carboidratos , Glicoconjugados , Água , Rutênio/química , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química
17.
Am J Physiol Cell Physiol ; 325(1): C272-C285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273236

RESUMO

Proteinase-activated receptors (PARs) are G protein-coupled receptors (GPCRs) activated by limited n-terminal proteolysis. PARs are highly expressed in many cancer cells, including prostate cancer (PCa), and regulate various aspects of tumor growth and metastasis. Specific activators of PARs in different physiological and pathophysiological contexts remain poorly defined. In this study, we examined the androgen-independent human prostatic cancer cell line PC3 and find the functional expression of PAR1 and PAR2, but not PAR4. Using genetically encoded PAR cleavage biosensors, we showed that PC3 cells secrete proteolytic enzymes that cleave PARs and trigger autocrine signaling. CRISPR/Cas9 targeting of PAR1 and PAR2 combined with microarray analysis revealed genes that are regulated through this autocrine signaling mechanism. We found several genes that are known PCa prognostic factors or biomarker to be differentially expressed in the PAR1-knockout (KO) and PAR2-KO PC3 cells. We further examined PAR1 and PAR2 regulation of PCa cell proliferation and migration and found that absence of PAR1 promotes PC3 cell migration and suppresses cell proliferation, whereas PAR2 deficiency showed opposite effects. Overall, these results demonstrate that autocrine signaling through PARs is an important regulator of PCa cell function.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células PC-3 , Comunicação Autócrina , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias da Próstata/genética
18.
Biomed Khim ; 69(3): 184-187, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384910

RESUMO

Renalase (RNLS) is a recently discovered protein, which plays different roles inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase (EC 1.6.3.5), while extracellular RNLS lacks its N-terminal peptide, FAD cofactor, and exhibits various protective effects in a non-catalytic manner. Certain evidence exists, that plasma/serum RNLS is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively degraded during short-term incubation with human plasma samples. Some synthetic analogues of the RNLS sequence (e.g. the Desir's peptide RP-220, a 20-mer peptide corresponding to the RNLS sequence 220-239) have effects on cell survival. This suggests that RNLS-derived peptides, formed during proteolytic processing, may have own biological activity. Based on results of a recent bioinformatics analysis of potential cleavage sites of RNLS (Fedchenko et al., Medical Hypotheses, 2022) we have investigated the effect of four RNLS-derived peptides as well as RP-220 and its fragment (RP-224) on the viability of two cancer cell lines: HepG2 (human hepatoma) and PC3 (prostate cancer). Two RNLS-derived peptides (RP-207 and RP-220) decreased the viability of HepG2 cells in a concentration dependent manner. The most pronounced and statistically significant effect (30-40% inhibition of cell growth) was observed at 50 µM concentration of each peptide. In the experiments with PC3 cells five of six RNLS-derived peptides had a significant impact on the cell viability. RP-220 and RP-224 decreased cell viability; however, no concentration dependence of this effect was observed in the range of concentrations studied (1-50 µM). Three other RNLS-derived peptides (RP-207, RP-233, and RP-265) increased viability of PC3 cells by 20-30%, but no concentration-dependence of this effect was found. Data obtained suggest that some RNLS-derived peptides may influence the viability of various cells and manifestation and direction of the effect (increase of decrease of the cell viability) is cell-type-specific.


Assuntos
Monoaminoxidase , Peptídeos , Humanos , Masculino , Células PC-3 , Peptídeos/farmacologia , Linhagem Celular
19.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299000

RESUMO

Cancer is a serious health problem due to the complexity of establishing an effective treatment. The purpose of this work was to evaluate the activity of a triazaspirane as a migration and invasion inhibitor in PC3 prostatic tumor cells through a possible negative regulation of the FAK/Src signal transduction pathway and decreased secretion of metalloproteinases 2 and 9. Molecular docking analysis was performed using Moe 2008.10 software. Migration (wound-healing assay) and invasion (Boyden chamber assay) assays were performed. In addition, the Western blot technique was used to quantify protein expression, and the zymography technique was used to observe the secretion of metalloproteinases. Molecular docking showed interactions in regions of interest of the FAK and Src proteins. Moreover, the biological activity assays demonstrated an inhibitory effect on cell migration and invasion, an important suppression of metalloproteinase secretion, and a decrease in the expression of p-FAK and p-Src proteins in treated PC3 cells. Triazaspirane-type molecules have important inhibitory effects on the mechanisms associated with metastasis in PC3 tumor cells.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Processos Neoplásicos , Movimento Celular , Metaloproteases/farmacologia , Invasividade Neoplásica
20.
Anticancer Agents Med Chem ; 23(15): 1722-1730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171011

RESUMO

INTRODUCTION: Prostate cancer is the second most prevalent cancer among men. Despite different treatments, including surgery, chemotherapy, radiation therapy, hormone therapy and immunotherapy for this disease, patients ultimately progress to advanced states. Thus, there is a need for new treatment options targeting cell growth and apoptosis to better control the proliferation and metastasis of these cells. There are many reports indicating overexpression of the 15-lipoxygenase-1 (15-LOX-1) enzyme in prostate tumors. Studies have also shown that inhibition of this enzyme prevents the progression of prostate cancer. OBJECTIVE: This study was conducted to assess the anti-cancer properties of some coumarin derivatives as possible 15- LOX-1 inhibitors, on PC-3 prostate cancer cells. METHODS: In this study, the activity of 15-LOX-1 was evaluated in PC-3 cells by a spectrophotometric assay. In addition, due to high similarity between the 15-LOX-1 and soybean 15-lipoxygenase (SLO) (L1; EC 1, 13, 11, 12) active sites, the soybean SLO was used to investigate inhibitory effects of synthetic coumarin compounds 8- isopentenyloxycoumarin (8-IC), 8-isopentenyloxy-3-carboxycoumarin (8-ICC), 8-geranyloxycoumarin (8-GC), 8- geranyloxy-3-carboxycoumarin (8-GCC), and 8-farnesyloxy-3-carboxycoumarin (8-FCC) on this enzyme. Moreover, the cytotoxic and anticancer effects of the coumarin compounds were examined on PC-3 (Prostate Cancer) and HDF-1 (Human Dermal Fibroblast) cells by alamarBlue assay. Finally, apoptosis-inducing effects of all synthetic compounds were determined by flow cytometry. RESULTS: The IC50 values obtained by the alamarBlue test revealed that 8-IC, 8-GC and 8-GCC had cytotoxic effects on PC-3 cells. Treating both PC-3 and HDF-1 cells with 8-ICC and 8-FCC did not significantly reduce cell number. Furthermore, the IC50 values of 8-IC on HDF-1 cells showed cytotoxic effects, while treating these cells with 8-GC and 8- GCC did not show any significant cytotoxicity on these normal human fibroblasts. Assessing the ability of 4-MMPB (as a specific inhibitor of 15-LOX-1), 8-GC, and 8-GCC compounds to inhibit SLO revealed that these compounds exerted strong 15-LOX-1 inhibitory activity, while 8-IC and 8-FCC had a weak inhibitory effect and also 8-ICC showed no inhibitory effect on SLO enzyme. In addition, flow cytometric analysis by FITC (fluorescein isothiocyanate)- annexin V and propidium iodide showed that treatment with IC50 values of 8-GC and 8-GCC induced apoptosis in 35.2% and 30.8% of PC-3 cells, respectively. CONCLUSION: Thus, 8-GC and 8-GCC can be introduced as effective anticancer agents with apoptosis-inducing properties. Furthermore, our results suggest that the cytotoxic effects of these compounds might be related to the inhibition of 15-LOX-1 enzyme in PC-3 cells. On the other hand, the cytotoxic effects of 8-IC might be due to the inhibition of other signaling pathways in PC-3 cells. However, further in vivo experiments are required to determine the exact mechanisms involved in the anticancer effects of these coumarin compounds.


Assuntos
Antineoplásicos , Inibidores de Lipoxigenase , Neoplasias da Próstata , Humanos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Receptores Depuradores Classe E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...